

OUR VISION

By our behavior, inspire society to propagate universal harmony, peace and understanding by upholding high ethical standards and respect of environment in all sphere of life and work.

OUR M

Explore and develop new catalytic solutions which are elegant, inspiring and also high in performance to drive sustainable growth.

To have healthy equitable relationship with our customers, vendors as well as employees by sharing our knowledge and act as catalyst in their growth.

OUR OBJECTIVE

Provide an alternative catalytic route of synthesis to conventional hazardous chemical route.

To provide a platform for aspiring organisations aiming to create a cleaner environment.

To bridge the gap between institutional research on catalyst development and making the catalyst available on commercial scale.

OUR OFFER

"We are confident that we can offer you an improved solution to your catalyst need such as..."

Be at par with global standards and maintain consistency in quality with efficient deliveries.

Derive the best result with our excellent technical support.

Catalyst development at our research centre for new and emerging applications.

NAUTILUS SHELL is the symbol of Golden Ratio $\varphi = 1.618$

This "golden" number, 1.61803399, represented by the Greek letter Phi, is known as the Golden Ratio, Golden Proportion, Golden Mean, Golden Section and Devine Proportion. It was written about by Euclid in "Elements" at around 300 B.C., by Luca Pacioli, a contemporary of Leonardo Da Vinci, in "De Divina Proportione" in 1509, by Johannes Kepler around 1600 and by Dan Brown in 2003 in his best selling novel, "The Da Vinic Code". It is widely believed that one of the greatest western inventor 'Leonardo Da Vinci' named this ratio as 'Divine Proportion' which symbolizes 'beauty with balance' and found it to be present in the designs from DNA to that of Galaxies. This number is also represented by an equally fascinating 'Fibonnaci Series', which seems to be basis of design of many objects found in our universe.

The description of this number which is symbolised by Nautilus Shell, as Golden and Devine is fitting perhaps because it is seen by many to open the door to a deeper understanding of spirituality in life. That is an incredible role for a single number to play, but again this one number has played an incredible role in human history and in the universe at large, thus inspiring us at NEOCAT to achieve the highest form of beauty, perfection and performance in our catalyst design.

And just the way universe has envoled through various stages (growth of civilization, evolution of various species), we also take aspiration from this golden ratio to chart our journey of growth and inspire the evolution of humanity through our contribution.

CONTACT

Head Office

Hitesh Vadalia hitesh@procat.in

Nitin Patil +91-9820622275 nitin.patil@neocat.in

Mangesh Pawar +91-8828013472 salesho@procat.in

Hyderabad Office

Umamaheshwar Rao +91-9866521798 sales.hyderabad@procat.in

Loksai S +91-9160902902 sales.hyderabad@procat.in

SKELETAL NICKEL **CATALYSTS**

Neocat Pvt. Ltd.

N-72, Additional Ambarnath Industrial Area, MIDC, Ambarnath (East) - 421506 Dist. Thane, Maharashtra

info@neocat.in www.neocat.in

SKELETAL NICKEL CATALYST (SNC)

- Skeletal Nickel Catalyst i.e. Raney Nickel Catalyst was discovered in 1924 by Dr. Murray Raney (1885-1966)
- Skeletal Nickel Catalyst consists of fine particles of Nickel seated on Aluminum and suspended in water.
- This catalyst is porous with occluded hydrogen in its pores, which imparts activity.

KEY ADVANTAGES OF SNC CATALYST

- Cost effective catalysts.
- Cover wide range of hydrogenation applications and reaction conditions.
- Excellent setting properties, benefits catalyst separation after hydrogenations.
- Longer Catalyst life cycles.

TIPS FOR USAGE OF SNC CATALYST

- Do not wash the catalyst more than 2-3 times with wateras well as solvent to avoid loss of activity.
- Avoid vigorous stirring during the catalyst washing
- For non-aqueous reaction, solvent can be precooled to avoid drying of catalyst due to solvent vapors.
- Weigh the Catalyst using "DRY basis formula".
- Charge catalyst by Gravity (not by suction) for retention of activity.
- Always make sure that the "solution for hydrogenation is homogeneous"

Grades	Recommended Applications
SNC 1211	Hydrogenation of CC Double bond to alkanes
	Hydrogenation of Nitro to amine
	Nitro-haloaromatics to corresponding amines with minimum dehalogenation
	Examples: Dichloro nitrophenol To Dichloro aminophenol
	Hydrogenation of Oximes to Amines
	Specific API use : Lisinopril, Sertraline, Mebeverine
SNC 2211	Hydrogenation of Straight chain Aldehydes to Alcohols
	Examples: Butyraldehyde to Butanol,
	Nitro to Amino in neat conditions
	Examples: P-Nitro Cumene to P-Cumidiene

Grades	Recommended Applications
SNC 3211	Hydrogenation of Oxime to amine Hydrogenation of Imine to Amine Hydrogenation of Aromatic compounds. Examples: Phenol to Cyclohexanol, Pyridine to Piperidine etc. Examples: Lisinopril, Octopamine HCI,
SNC 4211	Hydrogenation of Carbonyls to corresponding alcohols Examples: Benzophenone to Benzhydrol Hydrogenation of Nitrile to primary amines Examples. Benzonitrile to Benzylamine Specific use: Venlafaxine, Atorvastatin, Verapamil, CHEA
SNC 6211	Dextrose to Sorbitol Nitrile to amine
SNC 6231	Dextrose to Sorbitol Butanediol
SNC 7211	Dehydrogenation in Carbazole
SNC 8231	Hydrogenation of aromatic ring Hydrogenation of Carbonyls to alcohol Aromatic Nitrile to amine Examples: Substituted Phenols to cyclohexanols, Cyclohexadienone

STORAGE & HANDLING OF SNC CATALYST

- Do not allow the catalyst to get dry.
- Always store catalyst under water.
- Always use safety Apparels(Goggles, face shield, Gloves)
- Avoid skin contact.
- Keep drums upright & store in a cool & shaded place with good air ventilation.
- Spent catalyst should also be carefully stored under water.

All Skeletal Nickel Catalysts are pyrophoric in nature when dry